Project Title	Funding	Stratagia Plan Chicativa	Institution	
Project Title	Funding	Strategic Plan Objective	Institution	
Kinetics of drug macromolecule complex formation	\$712,920 	Q2.Other	University of California, San Diego	
Limbic system function in carriers of the fragile X premutation	\$677,700	Q2.S.D	University of California, Davis	
Defining cells and circuits affected in autism spectrum disorders	\$669,298	Q2.Other	The Rockefeller University	
Genetic studies of autism-related Drosophila neurexin and neuroligin	\$550,000	Q2.Other	University of North Carolina at Chapel Hill	
Function and structure adaptations in forebrain development	\$541,770	Q2.Other	University of Southern California	
Development of novel diagnostics for fragile X syndrome	\$537,123	Q2.S.D	JS Genetics, Inc.	
Cell adhesion molecules in CNS development	\$535,691	Q2.Other	Scripps Research Institute	
Autism and the insula: Genomic and neural circuits	\$506,341	Q2.Other	California Institute of Technology	
BDNF and the restoration of synaptic plasticity in fragile X and autism	\$490,756	Q2.S.D	University of California, Irvine	
Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$470,003	Q2.Other	Memorial Sloan-Kettering Cancer Center	
Function of neurexins	\$466,651	Q2.Other	Stanford University	
Function and dysfunction of neuroligins in synaptic circuits	\$450,000	Q2.Other	Stanford University	
High-throughput DNA sequencing method for probing the connectivity of neural circuits at single-neuron resolution	\$430,650	Q2.Other	Cold Spring Harbor Laboratory	
Neuronal activity-dependent regulation of MeCP2	\$426,857	Q2.S.D	Harvard Medical School	
Mechanisms of mGluR5 function and dysfunction in mouse autism models	\$419,137	Q2.S.D	University of Texas Southwestern Medical Center	
Glial control of neuronal receptive ending morphology	\$418,275	Q2.Other	Rockefeller University	
Morphogenesis and function of the cerebral cortex	\$409,613	Q2.Other	Yale University	
High throughput screen for small molecule probes for neural network development	\$405,000	Q2.Other	Johns Hopkins University	
Dysregulation of mTOR signaling in fragile X syndrome	\$403,767	Q2.S.D	Albert Einstein College of Medicine of Yeshiva University	
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$401,852	Q2.S.D	University of Illinois at Urbana Champaign	
Allelic choice in Rett syndrome	\$390,481	Q2.S.D	Winifred Masterson Burke Medical Research Institute	
Imaging signal transduction in single dendritic spines	\$382,200	Q2.Other	Duke University	
ACE Center: Cognitive affective and neurochemical processes underlying is in autism	\$378,379	Q2.Other	University of Illinois at Chicago	
Study of fragile X mental retardation protein in synaptic function and plasticity	\$366,516	Q2.S.D	University of Texas Southwestern Medical Center	
The microRNA pathway in translational regulation of neuronal development	\$352,647	Q2.S.D	University of Massachusetts Medical School	
Olfactory abnormalities in the modeling of Rett syndrome	\$351,575	Q2.S.D	Johns Hopkins University	

Project Title	Funding	Strategic Plan Objective	Institution	
Elucidating the function of class 4 semaphorins in GABAergic synapse formation	\$337,818	Q2.Other	Brandeis University	
The role of MeCP2 in Rett syndrome	\$329,781	Q2.S.D	University of California, Davis	
Inhibitory mechanisms for sensory map plasticity in cerebral cortex	\$320,399	Q2.Other	University of California, Berkeley	
Revealing protein synthesis defects in fragile X syndrome with new chemical tools	\$315,341	Q2.S.D	Stanford University	
MeCP2 modulation of bdnf signaling: Shared nechanisms of Rett and autism	\$314,059	Q2.S.D	University of Alabama at Birmingham	
Proteomics in drosophila to identify autism candidate substrates of UBE3A	\$313,159	Q2.S.D	University of Tennessee Health Science Center	
Caspr2 as an autism candidate gene: A proteomic approach to function & structure	\$312,000	Q2.Other	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School	
Regulation of 22q11 genes in embroyonic and adult forebrain	\$308,631	Q2.S.D	George Washington University	
Imaging PTEN-induced changes in adult cortical structure and function in vivo	\$300,339	Q2.Other	University of California, Los Angeles	
Aberrant synaptic form and function due to TSC-mTOR-related mutation in autism spectrum disorders	\$300,000	Q2.S.D	Columbia University	
Mouse models of human autism spectrum disorders: Gene targeting in specific brain regions	\$300,000	Q2.S.D	University of Texas Southwestern Medical Center	
Molecular mechanisms regulating synaptic strength	\$293,266	Q2.Other	Washington University in St. Louis	
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$281,742	Q2.S.E	University of Melbourne	
Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$278,656	Q2.S.D	University of Texas Southwestern Medical Center	
GABAergic dysfunction in autism	\$278,486	Q2.Other	University of Minnesota	
Young development of a novel pet ligand for detecting oxytocin receptors in brain	\$261,360	Q2.Other	Emory University	
Functional circuit disorders of sensory cortex in ASD and RTT	\$254,976	Q2.S.D	University of Pennsylvania	
Mouse models of the neuropathology of tuberous sclerosis complex	\$253,177	Q2.S.D	University of Texas Health Science Center at Houston	
Retrograde synaptic signaling by Neurexin and Neuroligin in C. elegans	\$250,000	Q2.Other	Massachusetts General Hospital	
New approaches to local translation: SpaceSTAMP of oroteins synthesized in axons	\$246,254	Q2.S.D	Dana-Farber Cancer Institute	
Augmentation of the cholinergic system in fragile X syndrome: a double-blind placebo study	\$237,600	Q2.S.D	Stanford University	
n vivo targeted gene silencing, a novel method	\$218,472	Q2.Other	Indiana University-Purdue University Indianapolis	

Project Title	Funding	Strategic Plan Objective	Institution
Neurexin-neuroligin trans-synaptic interaction in learning and memory	\$200,000	Q2.Other	Columbia University
Probing a monogenic form of autism from molecules to behavior	\$187,500	Q2.S.D	Stanford University
Regulation of synaptogenesis by cyclin-dependent kinase 5	\$180,264	Q2.Other	Massachusetts Institute of Technology
Genetically defined stem cell models of Rett and fragile X syndrome	\$175,000	Q2.S.D	Whitehead Institute for Biomedical Research
Activity-dependent phosphorylation of MeCP2	\$174,748	Q2.S.D	Harvard Medical School
Pathophysiology of MeCP2 spectrum disorders	\$170,383	Q2.S.D	Baylor College of Medicine
dentification of candidate genes at the synapse in autism spectrum disorders	\$169,422	Q2.Other	Yale University
Perturbed activity-dependent plasticity mechanisms in autism	\$158,034	Q2.Other	Harvard Medical School
Role of intracellular mGluR5 in fragile X syndrome and autism	\$150,000	Q2.S.D	Washington University in St. Louis
A sex-specific dissection of autism genetics	\$150,000	Q2.S.B	University of California, San Francisco
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	Q2.S.D	George Washington University
The role of Fox-1 in neurodevelopment and autistic spectrum disorder	\$145,757	Q2.Other	University of California, Los Angeles
MicroRNAs in synaptic plasticity and behaviors relevant o autism	\$131,220	Q2.S.D	Massachusetts General Hospital
Role of micro-RNAs in ASD affected circuit formation and function	\$127,383	Q2.Other	University of California, San Francisco
WTHFR functional polymorphism C677T and genomic nstability in the etiology of idiopathic autism in simplex amilies	\$114,984	Q2.Other	Queen's University
Quantitative proteomic approach towards understanding and treating autism	\$112,500	Q2.S.D	Emory University
PI3K/mTOR signaling as a novel biomarker and herapeutic target in autism	\$100,000	Q2.Other	Emory University
Presynaptic fragile X proteins	\$90,000	Q2.S.D	Brown University
nvestigation of social brain circuits in mouse models of he 16p11.2 locus	\$87,500	Q2.Other	Cold Spring Harbor Laboratory
Mesocorticolimbic dopamine circuitry in mouse models of autism	\$87,337	Q2.S.D	Stanford University
A functional genomic analysis of the cerebral cortex	\$85,471	Q2.Other	University of California, Los Angeles
MET signaling in neural development and circuitry ormation	\$83,810	Q2.Other	University of Southern California

Project Title	Funding	Strategic Plan Objective	Institution	
The role of CNTNAP2 in embryonic neural stem cell regulation	\$75,000	Q2.Other	Johns Hopkins University School of Medicine	
Coordinated control of synapse development by autism- linked genes	\$75,000	Q2.S.D	University of Texas Southwestern Medical Center	
Mechanisms of synapse elimination by autism-linked genes	\$75,000	Q2.S.D	University of Texas Southwestern Medical Center	
Neuroligin, oxidative stress and autism	\$75,000	Q2.Other	Oklahoma Medical Research Foundation	
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$69,813	Q2.S.E	University of Melbourne	
Functional analysis of neurexin IV in Drosophila	\$68,652	Q2.Other	University of California, Los Angeles	
The role of UBE3A in autism	\$62,500	Q2.S.D	Harvard Medical School	
Brain lipid rafts in cholesterol biosynthesis disorders	\$60,480	Q2.Other	Medical College of Wisconsin	
Genetic rescue of fragile X syndrome in mice by targeted deletion of PIKE	\$60,000	Q2.S.D	Albert Einstein College of Medicine of Yeshiva University	
Identification of targets for the neuronal E3 ubiquitin ligase PAM	\$60,000	Q2.S.D	Massachusetts General Hospital	
Role of GluK6 in cerebella circuitry development	\$55,826	Q2.Other	Yale University	
Regulation of synapse elimination by FMRP	\$54,734	Q2.S.D	University of Texas Southwestern Medical Center	
Early expression of autism spectrum disorder in experimental animals	\$54,000	Q2.Other	Neurochlore	
Transcriptional responsiveness in lymphoblastoid cell lines	\$52,863	Q2.Other	University of Pennsylvania	
Investigation of protocadherin-10 in MEF2- and FMRP-mediated synapse elimination	\$51,326	Q2.S.D	University of Texas Southwestern Medical Center	
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$50,434	Q2.S.E	University of Melbourne	
Frontostriatal synaptic dysfunction in a model of autism	\$48,398	Q2.Other	Stanford University	
Functional role of IL-6 in fetal brain development and abnormal behavior	\$41,800	Q2.Other	California Institute of Technology	
Pleiotropic roles of dyslexia genes in neurodevelopmental language impairments	\$41,800	Q2.S.D	Yale University	
The role of MeCP2 in Rett syndrome (supplement)	\$38,273	Q2.S.D	University of California, Davis	
Investigating the homeostatic role of MeCP2 in mature brain	\$35,400	Q2.S.D	Baylor College of Medicine	
Cortical microcircuit dysfunction as a result of MET deficiency: A link to autism	\$33,955	Q2.Other	Northwestern University	
Regulation of activity-dependent ProSAp2 synaptic dynamics	\$33,879	Q2.Other	Stanford University	
Mechanism of UBE3A imprint in neurodevelopment	\$33,616	Q2.S.D	University of California, Davis	

Project Title	Funding	Strategic Plan Objective	Institution
L-type calcium channel regulation of neuronal differentiation	\$32,129	Q2.S.D	Stanford University
Functional analysis of EFR3A mutations associated with autism	\$31,250	Q2.Other	Yale University
Cerebellar plasticity and learning in a mouse model of autism	\$31,250	Q2.Other	University of Chicago
Proteome and interaction networks in autism	\$31,250	Q2.Other	Harvard Medical School
Using fruit flies to map the network of autism-associated genes	\$31,249	Q2.Other	University of California, San Diego
Elucidation of the developmental role of Jakmip1, an autism-susceptibility gene	\$31,042	Q2.Other	University of California, Los Angeles
Neurobiology of RAI1, the causal gene for Smith- Magenis syndrome	\$31,022	Q2.S.D	Stanford University
Presynaptic regulation of quantal size by the cation/H+ exchangers NHE6 & NHE9	\$29,650	Q2.Other	University of California, Berkeley
Proteomics in drosophila to identify autism candidate substrates of UBE3A (supplement)	\$29,600	Q2.S.D	University of Tennessee Health Science Center
In-vivo imaging of neuronal structure and function in a reversible mouse model for autism.	\$28,000	Q2.S.D	Baylor College of Medicine
Macrocephalic autism: Exploring and exploiting the role of PTEN	\$28,000	Q2.Other	University of Wisconsin - Madison
A stem cell based platform for identification of common defects in autism spectrum disorders	\$28,000	Q2.S.D	Scripps Research Institute
Deciphering the function and regulation of AUTS2	\$28,000	Q2.Other	University of California, San Francisco
The role of intracellular metabotropic glutamate receptor 5 at the synapse	\$26,338	Q2.S.D	Washington University in St. Louis
Role of neurexin in the amygdala and associated fear memory	\$25,000	Q2.Other	Columbia University
Cellular characterization of Caspr2	\$24,666	Q2.Other	University of California, San Diego
Neuropeptide regulation of juvenile social behaviors	\$14,755	Q2.Other	Boston College
dFMRP and Caprin: Translational regulators of synaptic plasticity	\$12,768	Q2.S.D	University of Washington
Autism phenotypes in Tuberous Sclerosis: Risk factors, features & architecture	\$0	Q2.S.D	King's College London
Neuroligins and neurexins as autism candidate genes: Study of their association in synaptic connectivity	\$0	Q2.Other	University of California, San Diego
Self-injurious behavior: An animal model of an autism endophenotype	\$0	Q2.Other	University of Florida
Developing novel automated apparatus for studying battery of social behaviors in mutant mouse models for autism	\$0	Q2.Other	Weizmann Institute of Science

Project Title	Funding	Strategic Plan Objective	Institution
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$0	Q2.S.D	Stanford University
Ube3a requirements for structural plasticity of synapses	\$0	Q2.Other	University of North Carolina at Chapel Hill
Serotonin signal transduction in two groups of autistic patients	\$0	Q2.Other	University of Illinois at Chicago
A cerebellar mutant for investigating mechanisms of autism in Tuberous Sclerosis	\$0	Q2.S.D	Boston Children's Hospital
Aberrant synaptic function caused by TSC mutation in autism	\$0	Q2.S.D	Columbia University
Imaging synaptic neurexin-neuroligin complexes by proximity biotinylation: Applications to the molecular pathogenesis of autism	\$0	Q2.Other	Massachusetts Institute of Technology
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$0	Q2.Other	University of California, Los Angeles
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Q2.S.D	Children's Memorial Hospital, Chicago
Excessive cap-dependent translation as a molecular mechanism underlying ASD	\$0	Q2.Other	New York University
Role of negative regulators of FGF signaling in frontal cortex development and autism	\$0	Q2.Other	University of California, San Francisco
Perturbed cortical patterning in autism	\$0	Q2.Other	Seattle Children's Hospital
TrkB agonist therapy for sensorimotor dysfunction in Rett syndrome	\$0	Q2.S.D	Case Western Reserve University
Roles of miRNAs in regulation of Foxp2 and in autism	\$0	Q2.Other	Louisiana State University
Underlying mechanisms in a cerebellum-dependent model of autism	\$0	Q2.S.D	Harvard Medical School